Does Size Matter?
 Comparative sizes in biology

Microbes

Microbes are so small that most can only be seen using a microscope or a hand lens. The smallest, viruses, are not considered living organisms as they consist only of a protein coat surrounding genetic material (RNA or DNA) and can only multiply inside a host cell. For that reason, it is difficult to imagine their sizes compared with other biological organisms, even when they themselves are very small.

Knowing the size of a virus is important, particularly if it causes disease and can spread through the air in droplets of fluid breathed out. The virus causing Covid-19 has a diameter around 95 nm (nanometres) and the droplets are 5-10 $\mu \mathrm{m}$ (micrometres) -
see Scientific Measurements on page 2 for more information on these sizes. To stop inhaling this virus, a face mask must be able to filter out droplets/viruses as small as these dimensions. Also, if someone inhales such contaminated respiratory droplets, s/he can be exposed to hundreds or thousands of virus particles which increase the probability of infection.

Whereas most bacteria are around 2 micrometres $(0.0002 \mathrm{~cm})$ in length, a recent discovery has been made of one which is thousands of times bigger -1 cm long. Thiomargarita magnifica lives in salt water attached to fallen leaves and branches and has a more complex internal structure than other bacteria.

The smallest structures are RNA viruses

Name	Genetic material	Size
Rhino virus, polio virus	single-stranded RNA	$0.03 \mu \mathrm{~m}$
Influenza virus	single-stranded RNA	$0.10 \mu \mathrm{~m}$
Smallpox virus	double-stranded DNA	$0.30 \mu \mathrm{~m}$
Staphylococcus bacterium (on skin and boils) Lactobaccilus bacterium in milk, gut, mouth (probiotic)	double-stranded DNA	$1.00 \mu \mathrm{~m}$
Escherichia coli bacterium (E. coli) (in intestines)	DNA	$2.00 \mu \mathrm{~m}$
Human red blood cell (diameter)	DNA	$2.00 \mu \mathrm{~m}$
Saccharomyces cerevisiae Yeast cell	DNA (when immature)	$8.00 \mu \mathrm{~m}$
Human skin cell	DNA	$10.00 \mu \mathrm{~m}$
Human sperm cell	DNA	$30.00 \mu \mathrm{~m}$
Human hair (diameter)	DNA	$60.00 \mu \mathrm{~m}$
Pollen grain	DNA	$80.00 \mu \mathrm{~m}$
Human egg cell	DNA	$90.00 \mu \mathrm{~m}$
Paramecium (Protista)	DNA	$130.00 \mu \mathrm{~m}$
Amoeba proteus (Protista)	DNA	$250.00 \mu \mathrm{~m}$
Frog egg cell	DNA	0.05 mm
Thiomargarita magnifica bacterium	DNA	1.00 mm

Scientific Measurements

1. 1000 nanometres (nm)	$=1$ micrometre $(\mu \mathrm{m})$
2. 1000 micrometres $(\mu \mathrm{m})$	$=1$ millimetre $(\mathbf{m m})$
3. 1000 millimetres (mm)	$=1$ metre (\mathbf{m})

nm = nanometre (nano means dwarf)

10-9
$\mathrm{nm}=1$ billionth of a metre or $1 / 1,000,000,000$ of a metre or 0.000000001 of a metre

10-6

$\mu \mathrm{m}=1$ millionth of a metre or $1 / 1,000,000$ of a metre or 0.000001 of a metre
1000 micrometres in a millimetre
1000000 micrometres in a metre (6 zeros; 10-6)
$\mathbf{m m}=$ millimetre (milli means thousand)
1000 millimetres in a metre (3 zeros; 10^{-3})
$\mathbf{m}=$ metre

